Abstract

Bacterial communities inhabiting coastal sediments are subjected to oil spills. In order to examine the early structural response of a complex bacterial community to oil pollution, a kinetic study of the crude oil impact on bacterial communities inhabiting sediments from the contaminated Etang-de-Berre lagoon was performed. The sediments were maintained in slurries in presence or absence of crude oil and the kinetic study was carried out 14 days. During this period, 54% of crude oil was biodegraded showing the importance of the early degradation step. The metabolically active community (16S rRNA transcript analysis) was immediately impacted by the oil input, observed as an apparent decrease of species richness in the first hour of incubation. Nevertheless, this shift was quickly reversed, highlighting a fast, adaptative and efficient response of the metabolically active bacterial population. The high proportion of sequences related to hydrocarbonoclastic strains or petroleum-associated clones in active oiled community was consistent with significant increasing numbers of cultivable hydrocarbonoclastic bacteria at the end of the experiment. We concluded that "Etang-de-Berre" bacterial communities inhabiting oiled sediments for decades adopted a specific structure depending on oil presence and were able to face hydrocarbon contamination quickly and efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.