Abstract
Abstract Finite-length roller contacts are found in apex seal-housing interfaces in rotary engines, as well as in many other mechanical systems, such as those at the interfaces of meshing gear teeth, cam followers, and roller bearings. Rollers are usually designed with crowns and modified ends to mitigate the negative effects of misalignment, thermal deformation, and edge-induced non-uniform displacement. A crowned-roller elastohydrodynamic lubrication model is enriched and employed to investigate seven housing surface profiles, including a sinusoidal recess, sinusoidal ends, the combination design of a sinusoidal recess and sinusoidal ends, multiple sinusoidal recesses, a concave shape, and a concave shape with sinusoidal ends or round corners, aiming to improve the tribological performance of the interface via increasing the minimum film thickness but reducing the average and maximum film thicknesses, and lowering friction coefficient. The modified discrete convolution and fast Fourier transform method with duplicated padding is utilized to deal with the potential free-end-surface effect. The simulation results suggest that the combinations of a concave shape and sinusoidal ends, or round corners, are the best designs because they can help distribute the lubricant most uniformly without causing a negative edge effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.