Abstract
BackgroundMalaria is increasing in some recently urbanized areas that historically were considered lower risk. Understanding what drives urban transmission is hampered by inconsistencies in how “urban” contexts are defined. A dichotomized “urban–rural” approach, based on political boundaries may misclassify environments or fail to capture local drivers of risk. Small-scale agriculture in urban or peri-urban settings has been shown to be a major risk determinant.MethodsHousehold-level Anopheles abundance patterns in and around Malawi’s commercial capital of Blantyre (~ 1.9 M pop.) were analysed. Clusters (N = 64) of five houses each located at 2.5 km intervals along eight transects radiating out from Blantyre city centre were sampled during rainy and dry seasons of 2015 and 2016. Mosquito densities were measured inside houses using aspirators to sample resting mosquitoes, and un-baited CDC light traps to sample host seeking mosquitoes.ResultsOf 38,895 mosquitoes captured, 91% were female and 87% were Culex spp. Anopheles females (N = 5058) were primarily captured in light traps (97%). Anopheles abundance was greater during rainy seasons. Anopheles funestus was more abundant than Anopheles arabiensis, but both were found on all transects, and had similar associations with environmental risk factors. Anopheles funestus and An. arabiensis females significantly increased with distance from the urban centre, but this trend was not consistent across all transects. Presence of small-scale agriculture was predictive of greater Anopheles spp. abundance, even after controlling for urbanicity, number of nets per person, number of under-5-year olds, years of education, and season.ConclusionsThis study revealed how small-scale agriculture along a rural-to-urban transition was associated with An. arabiensis and An. funestus indoor abundances, and that indoor Anopheles density can be high within Blantyre city limits, particularly where agriculture is present. Typical rural areas with lower house density and greater distance from urban centres reflected landscapes more suitable for Anopheles reproduction and house invasion. However, similar characteristics and elevated Anopheles abundances were also found around some houses within the city limits. Thus, dichotomous designations of “urban” or “rural” can obscure important heterogeneity in the landscape of Plasmodium transmission, suggesting the need for more nuanced assessment of urban malaria risk and prevention efforts.
Highlights
Malaria is increasing in some recently urbanized areas that historically were considered lower risk
Dear et al Malar J (2018) 17:229 characteristics and elevated Anopheles abundances were found around some houses within the city limits
Descriptive statistics A total of 1548 household surveys were completed during five sample periods in 2015 and 2016
Summary
Malaria is increasing in some recently urbanized areas that historically were considered lower risk. Malaria continues to take the lives of nearly half a million people every year, with 90% of deaths occurring in subSaharan Africa (SSA). Malaria is endemic throughout most of SSA and is the leading cause of death in Malawi among children under five years of age [2]. In 2017, approximately 3.2 million people in Malawi (17% of the population) lived in an urban setting [3, 4]. Malaria in SSA has been widely studied, most research has been carried out in rural contexts, and little is known about how increasing urbanicity may be affecting Plasmodium transmission and malaria risk
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.