Abstract
Abstract. This paper presents a novel structural image analysis method based on geometric optimization techniques towards automatic building change detection. The aim of this method is to efficiently detect the changes of various buildings such as small houses and houses with complex roof in an urban area from high resolution satellite imagery by comparing with spatial database (maps). The previous research has indicated of the effectiveness of a map-based building change detection approach, and further investigation suggests the following three problems; (1) the large diversity of building types, roof shape, roof materials, illumination condition and shadow, (2) the difficulty of imagery and maps matching which normally leads to considerable position error, (3) the capacity of extracting various types of newly-built buildings. To solve these problems, we propose a new geometric optimization method which consists of the following two steps; (1) the building recognition based on a combinatorial optimization method for optimal building boundary extraction, (2) the newly-built building extraction based on an optimal building hypothesis search method. The experimental results showed that the detection rate was approximately 89% for existing and changed buildings, and approximately 83% for newly-built buildings. These results demonstrate the effectiveness of the proposed geometric optimization methods to integrate bottom-up and top-down analysis. By combining the locally detected image features with consideration of regional contexts from map, our method can achieve highly accurate building change detection in urban area. The method has been applied to a building change detection service named "HouseDiff" and succeeded in assisting users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.