Abstract

Situated in southern China, Zhaoqing City is a part of Guangdong Province, China. The total administrative area of the city covers 14,891 square kilometers. The data of China’s seventh population census in 2020 showed that the permanent resident population in Zhaoqing City reached up to 4,413,594. Meanwhile, Zhaoqing is one of the cities in the Guangdong-Hong Kong-Macao Greater Bay Area. House price analysis and prediction carried out against Zhaoqing City will have directive significance for relevant policies formulated by the local government, residential investment or purchase of consumers, and prediction of house price trend as well as business decisions made by enterprises. By virtue of machine learning and statistical theory, the house price in Zhaoqing City from 2010 to 2020 will be researched, and the house price prediction model of Zhaoqing City will be constructed in this paper with several variables including GDP, proportion of tertiary industry, income of urban residents, fiscal revenue, land price, investment volume in real estate development, permanent resident population, population density, and proportion of urban population in net migration. First of all, the methods of correlation analysis will be utilized, to select variables that are highly correlated with house price data based on correlation coefficients. Then, the model will be constructed for predicting the house price on the basis of multiple linear regression analysis that is conducted with selected variables. Finally, the prediction model will be adjusted gradually based on data with different correlations selected from available data, to realize better imitative effect and more precise predictive effect and select optimum prediction model. By means of the above model, the house prices of Zhaoqing City in 2021 and beyond will be predicted accurately, with preferable fitting effect and prediction effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.