Abstract
A comprehensive range of gas and particle phase pollutants were sampled at 1-hour time resolution in urban background Milan during summer 2012. Measurements include several soluble inorganic aerosols (Cl−,NO2−,NO3−,SO42−,Ca2+,K+,Mg2+,Na+,NH4+) and gases (HCl, HNO2,HNO3, NH3, NO, NO2,O3, SO2), organic, elemental and black carbon and meteorological parameters. Analysis methods used include mean diurnal pattern on weekdays and Sundays, pollution roses, bivariate polar plots and statistical models using backtrajectories. Results show how nitrous acid (HONO) was mainly formed heterogeneously at nighttime, with a dependence of its formation rate on NO2 consistent with observations during the last HONO campaign in Milan in summer 1998, although since 1998 a drop in HONO levels occurred following to the decrease of its precursors. Nitrate showed two main formation mechanisms: one occurring through N2O5 at nighttime and leading to nitrate formation onto existing particles; another occurring both daytime and nighttime following the homogeneous reaction of ammonia gas with nitric acid gas. Air masses reaching Milan influenced nitrate formation depending on their content in ammonia and the timing of arrival. Notwithstanding the low level of SO2 in Milan, its peaks were associated to point source emissions in the Po valley or shipping and power plant emissions SW of Milan, beyond the Apennines. A distinctive pattern for HCl was observed, featured by an afternoon peak and a morning minimum, and best correlated to atmospheric temperature, although it was not possible to identify any specific source. The ratio of primary-dominated organic carbon and elemental carbon on hourly PM2.5 resulted 1.7. Black carbon was highly correlated to elemental carbon and the average mass absorption coefficient resulted MAC=13.8 ± 0.2 m2 g−1. It is noteworthy how air quality for a large metropolitan area, in a confined valley and under enduring atmospheric stability, is nonetheless influenced by sources within and outside the valley.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.