Abstract

Nodal loops in two-dimensional (2D) systems are typically vulnerable against spin-orbit coupling (SOC). Here, we explore 2D systems with a type of doubly degenerate nodal loops that are robust under SOC and feature an hourglass type dispersion. We present symmetry conditions for realizing such hourglass Weyl loops, which involve nonsymmorphic lattice symmetries. Depending on the symmetry, the loops may exhibit different patterns in the Brillouin zone. Based on first-principles calculations, we identify the monolayer GaTeI-family materials as a realistic material platform to realize such loops. These materials host a single hourglass Weyl loop circling around a high-symmetry point. Interestingly, there is also a spin-orbit Dirac point enabled by an additional screw axis. We show that the hourglass Weyl loop and the Dirac point are robust under a variety of applied strains. By breaking the screw axis, the Dirac point can be transformed into a second Weyl loop. Furthermore, by breaking the glide mirror, the hourglass Weyl loop and the spin-orbit Dirac point can both be transformed into a pair of spin-orbit Weyl points. Our work offers guidance and realistic material candidates for exploring fascinating physics of several novel 2D emergent fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.