Abstract

Due to Chromium hexavalent Cr(VI) is one of the most carcinogenic toxic ions, it is essential for finding a low-cost, efficient and highly selective detection method. Considering the wide range of pH detection in water, a major issue is exploring high sensitive electrocatalyst. Thus, two crystalline materials with hourglass {P4Mo6} clusters in different metal centers were synthesized and had fabulous Cr(VI) detection performance in a wide pH range. At pH = 0, the sensitivities of CUST-572 and CUST-573 were 133.89 μA μM−1 and 30.05 μA μM−1, and the detection limits (LODs) of Cr(VI) were 26.81 nM and 50.63 nM which met World Health Organization (WHO) standard for drinking water. CUST-572 and CUST-573 also had good detection performance at pH = 1–4. In actual water samples, CUST-572 and CUST-573 also possessed sensitivities of 94.79 μA μM−1 and 20.09 μA μM−1 and LODs were 28.25 nM and 52.24 nM, showing high selectivity and chemical stability. The difference of the detection performance of CUST-572 and CUST-573 were mainly attributed to the interaction between {P4Mo6} and different metal centers of crystalline materials. In this work, electrochemical sensors for Cr(VI) detection in a wide pH range were explored, providing important guidance for the design of efficient electrochemical sensors for ultra-trace detection of heavy metal ions in practical environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call