Abstract

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30/spl deg/C for 80/spl deg/C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220/spl deg/C but IEEE standards continue to use a constant 30/spl deg/C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30/spl deg/C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30/spl deg/C to 60/spl deg/C and decrease the permissible average winding temperature rise from 150/spl deg/C to 120/spl deg/C for the 220/spl deg/C insulation temperature class.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.