Abstract
Rate-temperature scaling relationships have fascinated biologists for nearly two centuries and are increasingly important in our era of global climate change. These relationships are hypothesized to originate from the temperature-dependent kinetics of rate-limiting biochemical reactions of metabolism. Several prominent theories have formalized this hypothesis using the Arrhenius model, which characterizes a monotonic temperature dependence using an activation energy E. However, the ubiquitous unimodal nature of biological temperature responses presents important theoretical, methodological, and conceptual challenges that restrict the promise for insight, prediction, and progress. Here we review the development of key hypotheses and methods for the temperature-scaling of biological rates. Using simulations, we examine the constraints of monotonic models, illustrating their sensitivity to data nuances such as temperature range and noise, and their tendency to yield variable and underestimated E, with critical consequences for climate change predictions. We also evaluate the behaviour of two prominent unimodal models when applied to incomplete and noisy datasets. We conclude with recommendations for resolving these challenges in future research, and advocate for a shift to unimodal models that better characterize the full range of biological temperature responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.