Abstract

Intake of high fluoride concentrations through water affects up to 1 billion people worldwide, and the Tibetan Plateau (TP) is one of the most severely affected areas. Knowledge regarding the high fluoride risk areas, the driving factors, and at-risk populations on the TP remains fragmented. We collected 1581 natural water samples from the TP to model surface water and groundwater fluoride hazard maps using machine learning. The geomean concentrations of surface water and groundwater were 0.26 mg/L and 0.92 mg/L, respectively. Surface water fluoride hazard hotspots were concentrated in the north-central region; high fluoride risk areas of groundwater were mainly concentrated in the southern TP. Hazard maps showed a maximum estimate of 15% of the total population in the TP (approximately 1.47 million people) at risk, and 500,000 people considered the most reasonable estimate. Critical environment driving factors were identified, in which climate condition was taken for the vital one. Under the moderate climate change scenario (SSP2.45) for 2089–2099, the high fluoride risk change rate differed inside the TP (surface water −24%−55% and groundwater −56%−50%), and the overall risk increased in natural waters throughout the TP, particularly in the southeastern TP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.