Abstract

A novel image feature set named histogram of triangular paths in graph (HoTPiG) is presented. The purpose of this study is to evaluate the feasibility of the proposed HoTPiG feature set through two clinical computer-aided detection tasks: nodule detection in lung CT images and aneurysm detection in head MR angiography images. The HoTPiG feature set is calculated from an undirected graph structure derived from a binarized volume. The features are derived from a 3-D histogram in which each bin represents a triplet of shortest path distances between the target node and all possible node pairs near the target node. First, the vessel structure is extracted from CT/MR volumes. Then, a graph structure is extracted using an 18-neighbor rule. Using this graph, a HoTPiG feature vector is calculated at every foreground voxel. After explicit feature mapping with an exponential-χ2 kernel, each voxel is judged by a linear support vector machine classifier. The proposed method was evaluated using 300 CT and 300 MR datasets. The proposed method successfully detected lung nodules and cerebral aneurysms. The sensitivity was about 80% when the number of false positives was three per case for both applications. The HoTPiG image feature set was presented, and its high general versatility was shown through two medical lesion detection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.