Abstract

Two-dimensional particle-in-cell (PIC) simulations were performed for the cone-in-shell integrated fast-ignition experiments at the Omega Laser Facility [W. Theobald et al., Phys. Plasmas 18, 056305 (2011)]. The initial plasma density profile in the PIC simulations was taken from hydrodynamic simulations of the prepulse interaction with the gold cone. Hot-electron generation from laser–pre-plasma interactions and transport up to 100× the critical density (nc) was studied. The simulation showed a mean divergence half-angle of 68° and 50% absorption for the hot electrons. The simulation results show that the generated hot electrons were dominated in number by low-energy electrons but in energy by multi-MeV electrons. Electron transport between 5 and 100 nc was ballistic. In the late stage of the simulation, all the results were largely independent of polarization, indicating a stochastic hot-electron–generation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.