Abstract
The device characteristics and the radiation damage of n-channel and p-channel MOSFETs patterned using synchrotron X-ray lithography are examined. The effect of radiation damage caused by X-ray lithography on the device reliability during hot electron injection is investigated. Large amounts of positive oxide charge, neutral traps, and acceptor-like interface states are created by X-ray irradiation during the lithography process. Although several annealing steps are performed throughout the entire fabrication process, the radiation damage, particularly neutron traps, is not completely annealed out. The hot-electron-induced instability in p-channel MOSFETs is significantly increased due to the enhanced electron trapping in the oxide by residual traps. The effect of radiation on hot-electron-induced instability is found to be more severe in n/sup +/-poly buried-channel n-MOSFETs than in p/sup +/-poly surface-channel p-MOSFETs. However, the degradation in n-channel MOSFETs due to channel hot carriers is not significantly increased by X-ray lithography since the n-channel MOSFETs hot-carrier-induced degradation is dominated by interface state generation instead of electron trapping. These results suggest that p-channel MOSFETs, in addition to n-channel MOSFETs, need to be carefully examined in terms of hot-carrier-induced instability in CMOS VLSI circuits patterned using X-ray lithography. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.