Abstract

The aim of this research was to study and model the kinetics of the hot-air drying of Aloe vera ( Aloe barbadensis Miller) and to evaluate the influence of temperature on the kinetic parameters for the proposed models. A convective dryer was used at 50, 60, 70, 80 and 90 °C with an air flow of 2.0±0.2 m/s. The sorption isotherm of the fresh product was mathematically described by the Guggenheim, Anderson and de Boer (GAB) model, giving as a result monolayer moisture of 0.20 g water/g d.b. The mathematical models evaluated in the kinetic research included five empirical equations (Newton, Henderson–Pabis, Page, modified Page and Fick's diffusional model). The fit quality of the proposed models was evaluated by using the linear regression coefficient ( r 2), sum square error (SSE), root mean square error (RMSE) and Chi-square statistic ( χ 2). The diffusivity coefficient increased with the temperature from 5.30 to 17.73×10 −10 m 2/s, for a range of temperatures between 50 and 90 °C, with an estimated activation energy of 30.37 kJ/mol. When comparing the experimental moisture values with those estimated by the proposed models, the modified Page model provided the best to fit of the data, showing that this equation correctly simulates the Aloe vera drying process and represents an excellent tool for estimating its drying time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.