Abstract

Influence of filament temperature (TFil) on the structural, morphology, optical and electrical properties of silicon carbide (SiC) films deposited by using hot wire chemical vapor deposition technique has been investigated. Characterization of these films by low angle XRD, Raman scattering, XPS and TEM revealed the multiphase structure SiC films consisting of 3C–SiC and graphide oxide embedded in amorphous matrix. FTIR spectroscopy analysis show an increase in Si–C, Si–H, and C–H bond densities and decrease in hydrogen content with increase in TFil. The C–H bond density was found higher than the of Si–H and Si–C bond densities suggesting that H preferably get attached to C than Si. AFM investigations show decrease in rms surface roughness and grain size with increase in TFil. SEM studies show that films deposited at low TFil has spherulites-like morphology while at high TFil has cauliflower-like structure. Band gap values ETauc and E04 increases from 1.76 to 2.10 eV and from 1.80 to 2.21 eV respectively, when TFil was increased from 1500 to 2000 °C. These result show increase in band tail width (E04–ETauc) of multiphase SiC films. Electrical properties revealed that σDark increases from ~7.87 × 10−10 to 1.54 × 10−5 S/cm and Eact decreases from 0.67 to 0.41 eV, which implies possible increase in unintentional doping of oxygen or nitrogen due to improved crystallinity and Si–C bond density with increase in TFil. The deposition rate for the films was found moderately high (21 < rdep < 30 A/s) over the entire range of TFil studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.