Abstract

Mechanobiology focuses on a series of important physiopathological processes, such as how cells perceive different mechanomechanical stimuli, the process of intracellular mechanotransduction, and how mechanical signals determine the behavior and fate of cells. From the initial stage of embryogenesis, to developmental biology and regenerative medicine, or even through the whole life process, mechanical signaling cascades and cellular mechanical responses in mechanobiology are of great significance in biomedical research. In recent years, research in the field of mechanobiology has undergone remarkable development. Several scientific consortia around the world have been analyzing mechanobiological processes from different perspectives, aiming to gain insights into the regulatory mechanisms by which mechanical factors affect cell fate determination. In this article, we summarized and reviewed the topics that have attracted more research interests in recent years in the field of mechanobiology, for example, arterial blood vessels, stem cell, and ion channel. We also discussed the potential trends that may emerge, such as nuclear deformation, fibrous extracellular matrix, tumor mechanobiology, cellular mechanotransduction, and piezo ion channels. In addition, we put forward new ideas concerning the limitations of mechanism research and the importance of big data analysis and mining in this field, thereby providing objective support and a systematic framework for grasping the hot research topics and exploring new research directions in the field of mechanobiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.