Abstract

Hot tearing is known as one of the most critical solidification defects commonly encountered during casting practice. As most Mg alloys are initially prepared by casting, ingots must have superior quality with no casting defects for the further processing. Due to the extensive potential biodegradable applications of binary Mg-Ca alloys, it is of great importance to investigate their hot tearing behavior. In the present study, the influence of Ca content (0.1, 0.2, 0.5, 1.0, and 2.0 wt pct) on hot tearing susceptibility (HTS) of Mg-Ca binary alloys was investigated using a constrained rod casting apparatus equipped with a load cell and data acquisition system. Tear volumes were quantified with 3D X-ray tomography. Results showed that the influence of Ca content on HTS followed a “Λ” shape: the HTS increased with increase in Ca content, reached a maximum at 0.5 to 1 wt pct Ca, and then decreased with further increasing the Ca content to 2.0 wt pct. The wide solidification range and reasonably high volume of intermetallic in the Mg-0.5 wt pct Ca and Mg-1 wt pct Ca alloys resulted in high HTS. Microstructure analysis suggested that the hot tear initiated at grain boundaries and propagated along them through thin film rupture or across the eutectic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.