Abstract

Herein, a hot tearing measured system with external excitation coil and a differential thermal analysis system with applied magnetic field were used to study the effects of low-frequency alternating magnetic field on the solidification behavior and hot tearing susceptibility (HTS) of the AXJ530 alloy under different magnetic field parameters. The hot tearing volume of the castings was measured via paraffin infiltration method. The microstructure of the hot tearing zone of the casting was observed using optical microscopy and scanning electron microscopy, and the phase composition was analyzed using X-ray diffraction and energy depressive spectroscopy. The experimental results show that the solidification interval of AXJ530 alloy was shortened and the dendrite coherency temperature of the alloy decreased with the increase in frequency of alternating magnetic field. Under appropriate magnetic field parameters, the electromagnetic force could enhance the convection in the melt to promote the flow of the residual liquid phase, refine the microstructure, and optimize the feeding channel in the late solidification stage, which reduced the HTS of the alloy. However, when the magnetic field frequency was increased to 15 Hz, the induced current generated excessive Joule heat to the melt. At this time, the thermal action of the magnetic field coarsened the microstructure of the alloy, resulting in an increase in HTS of the alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call