Abstract

Hot tearing (or hot cracking) is recognised in the foundry industry as a serious defect. Although it has been investigated for decades, understanding still stands at a qualitative level. In this work, investigations on hot tearing in the binary Mg–1Al (wt-%) alloy have been conducted, using a contraction stress measuring method which shows evidence of good repeatability. The results show that increasing mould temperature decreases hot tearing susceptibility for Mg–1Al due to a decreased cooling rate. The recorded contraction force curves also show that hot cracks initiate under all investigated mould temperatures; however, the crack propagation behaves differently. At lower mould temperatures, the crack propagates very fast, while at higher mould temperatures it propagates slowly. This indicates that a lower cooling rate allows a better chance for the retained liquid to refill the crack. Consequently this leads to partial or complete interruption of crack propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call