Abstract
Constraints on integration densities and on operating frequencies of integrated circuits have become so important that thermal phenomena can not be neglected any longer. A high resolution thermal mapping of such circuits under operation is then needed. As we show in this paper, the thermoreflectance technique, based on the reflection coefficient variation with temperature give access to the elevation of temperature produced by the circuit after the execution of benchmarks. In this paper, the frequency of the benchmark can be as high as 1 GHz and we show that using a low repetition rate of these benchmarks makes it possible to retrieve the thermal response of the circuit working at high frequency. These measurements can be very useful to adjust thermal dissipation models and to analyse failures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.