Abstract

Liquids irradiated with high-intensity ultrasound undergo acoustic cavitation--the formation, growth, and implosive collapse of bubbles. The energy stored during the growth of the bubble in the rarefaction phase of the acoustic field is released when the bubble violently collapses in the compression phase of the acoustic field, as acoustic noise, shock waves, chemical reactions, and the emission of light (sonoluminescence, SL). This violent collapse is predicted to generate a hot spot of thousands of Kelvin within the bubble, but, to date, there have been only a limited number of experimental measurements of the temperature of this hot spot. Although the SL of water has been studied for more than 50 years, the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants, synthetic applications of sonochemistry, etc.), the authors decided to apply previous spectroscopic analysis of SL of nonaqueous liquids to aqueous solutions doped with small amounts of hydrocarbons. The authors have collected and analyzed excited-state C{sub 2} NBSL (multi-bubble sonoluminescence, light emission from the clouds of cavitating bubbles) spectra from mixtures of organic liquids in water at 20 kHz and find an effective emissionmore » temperature of 4,300 {+-} 200 K.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.