Abstract

Hot solvent-assisted oil recovery is a low emission-intensity oil recovery method from heavy oil resources. This method is particularly promising for fractured reservoirs where the application of current thermal methods may involve challenges associated with heat loss and early breakthrough. In this study a new model of heat and mass transfer for oil recovery from a single matrix block of a naturally fractured reservoir using a hot miscible solvent is developed. Because of the difference in magnitude between thermal and mass diffusivities, heat diffuses beyond the solvent–oil interface and there is no significant convective heat transfer. This results in a reduction of oil viscosity in the center of the matrix block and a vertical convective flow pattern instead of a pattern parallel to the oil–solvent interface observed during cold solvent injection. Using this model, optimization graphs are developed to perform a fast qualitative assessment of the applicability of a hot solvent-assisted gravity drainage...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.