Abstract

Hot shortness studies have been carried out on a copper-alloyed high strength interstitial free steel concentrating on the factors such as strain rate, temperature of deformation and, time and temperature of high temperature exposure. Thermomechanical schedules have been simulated for industrial conventional and direct hot rolling deformation processes. In comparison with traditional interstitial free steel, the mechanical properties of copper-alloyed high strength interstitial free steel at high temperature deteriorate significantly due to hot shortness. The best mechanical properties were obtained when the steel was reheated in Ar atmosphere to avoid oxidation and concomitant hot shortness. Enhanced oxidation of the material before hot deformation resulting from high temperature exposure in air for longer durations increases the susceptibility of the material to hot shortness. It has been shown that 1373K is the most detrimental temperature with regard to the susceptibility of the material to hot shortness irrespective of the deformation schedule. Temperatures higher and lower than 1373K reduce the susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.