Abstract

The dynamics of hot phonons in supported, suspended, and gated monolayer graphene was studied by using time-resolved anti-Stokes Raman spectroscopy. We found that the hot phonon relaxation is dominated by phonon-phonon interaction in graphene, and strongly affected by the interaction between graphene and the substrate. Relaxation via carrier-phonon coupling, known as Landau damping, is ineffective for hot phonons which are in thermal equilibrium with excited carriers. Our findings provide a basis for better management of energy dissipation in graphene devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.