Abstract

The mechanisms leading to the formation of disks around young stellar objects (YSOs) and to the launching of the associated jets are crucial to the understanding of the earliest stages of star and planet formation. HH 212 is a privileged laboratory to study a pristine jet-disk system. Therefore we investigate the innermost region ($<100$ AU) around the HH 212-MM1 protostar through ALMA band\,7 observations of methanol. The 8 GHz bandwidth spectrum towards the peak of the continuum emission of the HH 212 system reveals at least 19 transitions of methanol. Several of these lines (among which several vibrationally excited lines in the v$_{\rm t}=1,2$ states) have upper energies above 500 K. They originate from a compact ($<135$ AU in diameter), hot ($\sim 295$ K) region elongated along the direction of the SiO jet. We performed a fit in the $uv$ plane of various velocity channels of the strongest high-excitation lines. The blue- and red-shifted velocity centroids are shifted roughly symmetrically on either side of the jet axis, indicating that the line-of-sight velocity beyond 0.7 km s$^{-1}$ from systemic is dominated by rotational motions. The velocity increases moving away from the protostar further indicating that the emission of methanol is not associated with a Keplerian disk or rotating-infalling cavity, and it is more likely associated with outflowing gas. We speculate that CH$_3$OH traces a disk wind gas accelerated at the base. The launching region would be at a radius of a few astronomical units from the YSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.