Abstract

SIS-g-PB copolymers were successfully synthesized by grafting living polybutadiene (PB) lithium macroanions onto epoxidized SIS copolymers. Their molecular structures and thermal properties were characterized by TGA, 1H-NMR and DSC, respectively. SIS, epoxidized SIS (ESIS) and SIS-g-PB copolymers were melt-blended with tackifiers to develop hot-melt pressure-sensitive adhesives (HMPSAs), respectively (named of H-SIS, H-ESIS and H-SIS-g-PB). Their adhesive performances were measured in terms of 180° peel strength and holding power. A modified Franz type horizontal diffusion cell was used to carry out In vitro drug release experiments, in which geniposides were chosen as hydrophilic model drugs. The results showed that H-SIS-g-PB has two times as high a 180° peel strength as H-SIS. Meanwhile H-SIS-g-PB has a slightly lower drug cumulative release rate than H-ESIS. It is indicated that the PB branches not only could impart good adhesive performance to H-SIS-g-PB via improving the compatibility between the epoxidized main chains and tackifier resins but also provide release channels to hydrophilic drugs by retaining most of the epoxide groups in the SIS-g-PB copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call