Abstract

Unidirectional carbon-fiber/thermoplastic/epoxy prepreg is manufactured with embedded microcapsules containing a healing agent for a thermoplastic-toughened epoxy matrix. A laboratory-scale prepreg fabrication line was designed to produce a prepreg fabric of which fiber-interstitial spaces accommodate microcapsules of an average diameter of 2.8 µm. Microcapsules containing the healing agent, ethyl phenylacetate (EPA), were coated with polydopamine (PDA) to withstand harsh manufacturing conditions. The prepreg fabrics were laminated and hot-pressed to produce composites of a high fiber volume fraction (ca. 62%), exceptional thermal stability (Tg=170 °C) and fracture toughness. The laminated composite achieved a uniform distribution of intact microcapsules with an overall concentration of 3.1 vol% and a 20 wt% thermoplastic-toughened (poly(bisphenol a-co-epichlorohydrin); PBAE) epoxy matrix developed from cure-induced phase separation. The co-existence of intact microcapsules filled with healing agent and the phase-separated PBAE/epoxy matrix has significant potential to mitigate small scale damage in the composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.