Abstract
Giant planets orbiting main-sequence stars closer than 0.1 AU are called hot Jupiters. They interact with their stars affecting their angular momentum. Recent observations provide suggestive evidence of excess angular momentum in stars with hot Jupiters in comparison to stars with distant and less massive planets. This has been attributed to tidal interaction, but needs to be investigated in more detail considering also other possible explanations because in several cases the tidal synchronization time scales are much longer than the ages of the stars. We select stars harbouring transiting hot Jupiters to study their rotation and find that those with an effective temperature greater than 6000 K and a rotation period shorter than 10 days are synchronized with the orbital motion of their planets or have a rotation period approximately twice that of the planetary orbital period. Stars with an effective temperature lower than 6000 K and a rotation period longer than 10 days show a general trend toward synchronization with increasing effective temperature or decreasing orbital period. We propose a model for the angular momentum evolution of stars with hot Jupiters to interpret these observations. It is based on the hypothesis that a close-in giant planet affects the coronal field of its host star leading to a topology with predominantly closed field lines. Our model can be tested observationally and has relevant consequences for the relationship between stellar rotation and close-in giant planets as well as for the application of gyrochronology to estimate the age of planet-hosting stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.