Abstract

In this study, titanium borides reinforced Ti-6Al-4V composites have been successfully prepared by hot isostatic pressing (HIPing). The microstructure of the as-fabricated samples was investigated using X-ray diffraction technique, secondary electron microscopy and electron backscatter diffraction and the mechanical properties evaluated through micro-hardness and wear resistance measurements together with nano-indentation. It was found that during HIPing the additive particles TiB2 have transformed into TiB needles which tend to decorate at prior particle boundaries of the consolidated powder particles to form a network structure. Under the same HIPing condition, the needles became increasingly coarser and agglomerated with increased addition of TiB2. The micro-hardness of the synthesized materials increased with increased volume fraction of TiB. Nano-indentation measurement demonstrates that the TiB network structure shows much higher nanohardness than the surrounding matrix regions. The friction coefficient of the synthesized composites decreased continuously with increased volume fraction of TiB, indicating improved wear resistance. High resolution transmission electron microscopy analysis on wear debris revealed the formation of a series of oxides suggesting that chemical reaction between alloy elements and oxygen in air may have happened. It is thus believed that the wearing of the current samples is a result of both friction and chemical reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.