Abstract

As a new class of potential midrange temperature thermoelectric materials, quaternary chalcogenides like Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) suffer from low electrical conductivity due to insufficient doping. In this work, Cu-doped CZTSe nanocrystals consisting of polygon-like nanoparticles are synthesized with sufficient Cu doping contents. The hot-injection synthetic method, rather than the traditional one-pot method, in combination with the hot-pressing method is employed to produce the CZTSe nanocrystals. In Cu-doped CZTSe nanocrystals, the electrical conductivity is enhanced by substitution of Zn(2+) with Cu(+), which introduces additional holes as charge carriers. Meanwhile, the existence of boundaries between nanoparticles in as-synthesized CZTSe nanocrystals collectively results in intensive phonon-boundary scatterings, which remarkably reduce the lattice thermal conductivity. As a result, an average thermoelectric figure of merit of 0.70 is obtained at 450 °C, which is significantly larger than that of the state-of-the-art quaternary chalcogenides thermoelectric materials. The theoretical calculations from the Boltzmann transport equations and the modified effective medium approximation are in good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.