Abstract

We use quasi-steady-state photoinduced absorption (PIA) to study charge generation in blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) with PbS nanocrystal quantum dots as a function of excitation energy. We find that, per photon absorbed, the yield of photogenerated holes present on the conjugated polymer increases with pump energy, even at wavelengths where only the quantum dots absorb. We interpret this result as direct evidence for transfer of hot holes in these conjugated polymer/quantum dot blends. These results help understand the operation of hybrid organic/inorganic photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.