Abstract

Hot flow anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the earth's quasi-parallel bow shock. This paper presents one-dimensional hybrid computer simulations illustrating a formation mechanism for HFAs in which the single hot ion population results from a spatial separation of two counterstreaming ion beams. The higher-density cooler regions are dominated by the background (solar wind) ions, and the lower-density hotter internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large-amplitude magnetic fields which are generated by ion/ion streaming instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call