Abstract

Polymer microfabrication methods are becoming increasingly important as low-cost alternatives to the silicon or glass-based MEMS technologies. In this study, micro molding via hot embossing was applied to micro-featured used for DNA/RNA test. LIGA like process using UV light aligner was used to prepare silicon based SU-8 photoresist followed by electroforming to make Ni-Co based stamp. The micro features in the stamp with 5 inch diameter size and 0.2 mm thickness includes 30mum in depth by 100mum in width micro-channel size and 50mum pitch size. PMMA film of 1 mm thickness was utilized as molding substrate. Effect of molding conditions on the replication accuracy was investigated. The imprint width, imprint depth and angle of sidewall of micro-channels were analyzed and correlated. It was found that the molding condition including applied force and embossing temperature are found to all affect the molding accuracy significantly. The imprint depth increases with the imprint force until a saturation value. The imprint depth also increases with the embossing temperature until a saturation value. Basically, 20 kN and 180degC for applied force and embossing temperature can obtain acceptable results when considering molding cycle time. However, 25 kN and 220degC, respectively, under 5 minutes embossing time can obtain a nearly perfect replication in our experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.