Abstract
Hot electrons dominate the ultrafast ($\sim$fs-ps) optical and electronic properties of metals and semiconductors and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third harmonic generation measurements on gated single-layer graphene and detect a significant deviation from the cubic power-law expected for a third harmonic generation process. We assign this to the presence of hot electrons. Our results indicate that the performance of nonlinear photonics devices based on graphene, such as optical modulators and frequency converters, can be affected by changes in the electronic temperature, which might occur due to increase of absorbed optical power or Joule heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.