Abstract
AbstractA new scheme for cone-hollow-assisted fast ignition in inertial fusion is investigated. A hollow is attached to the tip of a conventional gold cone. The transport and heating of the high-current electrons propagating from the cone tip to the compressed fuel core along the hollow is investigated by two-dimensional hybrid simulation. Different hollow geometry sizes are examinized. It is shown that with proper hollow guiding, hot electrons can be collimated between the inner-walls of the hollow by the large interface magnetic fields appearing on the inner surface. When the beam electrons further propagate into the dense region, they are scattered into the gold hollow through collisions with the fuel electrons and ions. The resulting magnetic potential around the hollow then bends beam electrons along the gold hollow to reach the dense core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.