Abstract

The temperature-dependent reflectivity of metals is quantified by the thermoreflectance coefficient, which is a material-dependent parameter that depends on the metallic band structure, electron scattering dynamics, and photon wavelength. After short-pulse laser heating, the electronic subsystem in a metal can be driven to temperatures much higher than that of the lattice, which gives rise to unique nonequilibrium electron and phonon scattering dynamics, leading to a “hot electron” thermoreflectance that is different from the traditionally measured equilibrium coefficient. In this work, we analytically quantify and experimentally measure this hot electron thermoreflectance coefficient through ultrafast pump–probe measurements of thin gold films on silica glass and sapphire substrates. We demonstrate the ability to not only quantify the thermoreflectance during electron–phonon nonequilibrium but also validate this coefficient’s predicted dependence on the absolute temperature of the electronic subsystem. T...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.