Abstract
Experimental data [F. N. Beg, Phys. Plasmas 4, 447 (1997)10.1063/1.872103] indicate that for intense short-pulse laser-solid interactions at intensities up to 5 x 10(18) W cm(-2) the hot-electron temperature proportional, variant(Ilambda(2)) (1/3). A fully relativistic analytic model based on energy and momentum conservation laws for the laser interaction with an overdense plasma is presented here. A general formula for the hot-electron temperature is found that closely agrees with the experimental scaling over the relevant intensity range. This scaling is much lower than ponderomotive scaling. Examination of the electron forward displacement compared to the collisionless skin depth shows that electrons experience only a fraction of a laser-light period before being accelerated forward beyond the laser light's penetration region. Inclusion of backscattered light in a modified model indicates that light absorption approaches 80%-90% for intensity >10(19) W cm(-2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.