Abstract

Ruthenium(II) tris-(2,2‘-bipyridine) chelate exhibits strong electrogenerated chemiluminescence during cathodic pulse polarization of oxide-covered aluminum electrodes in aqueous solutions. The present method is based on a tunnel emission of hot electrons into an aqueous electrolyte solution. The method allows the detection of ruthenium(II) tris-(2,2‘-bipyridine) and its derivatives below nanomolar concentration levels and yields linear log−log calibration plots spanning several orders of magnitude of concentration. This method allows simultaneous excitation of derivatives of ruthenium(II) tris-(2,2‘-bipyridine) and Tb(III)-chelates. The former label compounds have a luminescence lifetime of the order of microseconds, while the latter compounds generally have a luminescence lifetime of around 2 ms. Thus, the combined use of these labels easily provides the basis for two-parameter bioaffinity assays by either using wavelength or time discrimination or their combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.