Abstract

Hot electrons generated upon interaction of p-polarized 130 fs laser pulses with copper and penetrating into the target material are characterized with respect to their energy distribution and directionality. "Experimental" data are obtained by comparing the rear-side x-ray emission from layered targets with Monte Carlo electron-photon transport simulations. Theoretical electron energy distributions are derived by means of a one and a half-dimensional particle-in-cell code. Both sets of data consist of a two-temperature distribution of electrons propagating in a direction almost perpendicular to the target surface. The "experimental" data contain a considerably higher population of the lower temperature electrons. The discrepancy is explained by the intensity distribution of the laser spot. The results are used to design an experiment for demonstrating photopumping of cobalt with copper Kalpha radiation. A 10 &mgr;m copper foil is backed with 1 mm of polyethylene (PE) followed by 10 &mgr;m of cobalt, the rear-side Kalpha emission of which is measured. The PE layer prevents fast electrons from reaching the cobalt. Comparing the cobalt Kalpha emission with that of nickel, which is not photopumped by copper Kalpha shows enhancement by almost a factor of 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call