Abstract

Photocatalytic reactions could enhance the share of chemicals produced through renewable sources. The efficiency of photocatalysts drastically depends on light absorption, on the surface energy of the crystals, and on the properties of the nanobuilding blocks assembled in devices. Here, we show that photoelectrochemical water oxidation on brookite TiO2 nanorods is greatly enhanced by engineering the location of Au nanoparticles deposition. Brookite photoanodes show a very low onset potential for water oxidation to H2O2 of −0.2 VRHE due to energetics of exposed crystal facets. By combining electrochemical measurements and ultrafast optical spectroscopy, we link the water oxidation activity with electron–hole recombination phenomena. The preferential Au decoration at the electrode/water interface produces highly enhanced photocurrent, while when Au is distributed along the whole film thickness, the activity is depressed with respect to pure brookite. In the latter case, Au nanoparticles act as recombination...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call