Abstract

The present work reports a simple and direct sputtering deposition to form solid state TiO2|Ag independent plasmonic solar cells. The independent plasmonic solar cells are based on a Schottky barrier between two materials, TiO2 and Ag. The Ag functions as the absorber generating “hot” electrons, as well as the contact for the solar cell. The Ag sputtering is performed for different durations, to form Ag nanoparticles with a wide size distribution on the surface of rough spray pyrolysis deposited TiO2. Incident photon to current efficiency (IPCE) measurements show photovoltaic activity below the TiO2 bandgap, which is caused by the silver nanoparticles that have a wide plasmonic band, leading to the generation of “hot” electrons. X‐ray photoelectron spectroscopy analysis supports the “hot” electron injection mechanism by following the Ag plasmon band and detecting local photovoltages. The measurements show that electrons are formed in the Ag upon illumination and are injected into the TiO2, producing photovoltaic activity. J–V measurements show photocurrents up to 1.18 mA cm−2 and photovoltages up to 430 mV are achieved, with overall efficiencies of 0.2%. This is, to our knowledge, the highest performance reported for such independent plasmonic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.