Abstract

Axisymmetric compression tests using Gleeble 3800 simulator were carried out to investigate hot deformation behaviors of an AA5083 alloy under high strain rate conditions. Sharp temperature rise and load cell ringing characterized by severely vibrational load responses were encountered at strain rates higher than 20 s-1 and sample buckling occurred at low temperatures. The load cell ringing was corrected using a moving average method with a two-way filtering operation to correct phase distortion. Isothermal flow curves were obtained by fitting the instantaneous temperatures into a binomial function, while buckling was correlated with sample height and Young’s modulus. After the corrections, hyperbolic sine equation was successfully used to extend from the hot tensile data having strain rates lower than 3 s-1 to 100 s-1. Quantitative analyses were accordingly made over the effects of temperature, strain rate and work hardening behavior on the flow curves. The previous constitutive equation in form of temperature, strain and strain rate was modified to predict the hot deformation resistance of the AA5083 alloy at temperatures of 250-450oC under the high strain rate operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call