Abstract

The hot deformation behavior of as-cast AZ31 magnesium alloys have been investigated at 200~400°C and strain rates 0.001~1s-1 by means of hot compression tests on a Gleeble-1500D thermal-mechanical simulator. We have analyzed the flow stress-strain curve and presented the constitutive equation by calculating stress exponent, activation energy and Zemer-Hollomon parameter. Then, the processing map of AZ31 alloys has been developed based on the dynamic material model theories and Prasad instability criterion. The flow instability domain is observed at lower temperature and the larger power dissipation rate is emerging at 300~400°C. We have analyzed the corresponding deformation microstructures and it is characteristic of dynamic recrystallization. These results have shown that AZ31 alloy has good workability at 300~400°C and lower strain rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.