Abstract
The hot deformation behavior of TC11 with an equiaxed α+β pre-form microstructure was investigated by hot compression tests in the temperature range 800°C–1090°C and strain rate range 1×10-310s-1. Several approaches have been used in this investigation, which include analysis of shapes of stress–strain curves, kinetic analysis and microstructure observation. The experimented results showed that, (1) In the β phase field, the alloy exhibits dynamic re-crystallization. The apparent activation energy in this domain is estimated to be 183kJ/ mol, which is close to that for self-diffusion in β. The re-crystallized grain size may be governed by competing of diffusion and dynamic re-crystallization rate at deforming conditions. (2) In the α+β phase field, the alloy exhibits super-plastic deformation behavior at 0.001-0.01s-1 and 980°C -850°C, and the apparent activation energy estimated in this domain is about 600 kJ/mol, which is much higher than that for self-diffusion in α-titanium due to β volume fraction is not constant over the test temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.