Abstract

We deeply analyze the deformation behavior of Mg-Gd-Nd(-Sm)-Zr alloys under high temperature uniaxial compression, and explore the influence mechanism of Sm on the microstructure evolution of Mg-Gd-Nd-Zr alloy. We can draw the following conclusions: the addition of Sm delays the dynamic recrystallization of Mg-Gd-Nd-Zr alloy, resulting in the increase of stress and the decrease of machinability. There is no dynamic precipitation in Mg-Gd-Nd-Zr alloy at 400 °C/0.01 s−1/0.7, which is related to the high solute-vacancy binding energy of Nd. Under the same deformation condition, two kinds of dynamic precipitates with different size and shape appear in Mg-Gd-Nd-Sm-Zr alloy: fine particle phase and coarse lamellar phase. The two precipitates are Mg(Gd, Nd, Sm) with body-centered cubic structure, and are incoherent with the matrix. The coarse lamellar phase effectively hinders dislocation rearrangement, which explains the delay of dynamic recrystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call