Abstract

Abstract The hot deformation characteristics of an as-extruded ZM31 (Mg–Zn–Mn) magnesium alloy with an addition of 3.2 wt.% Y, namely ZM31 + 3.2Y, have been studied via isothermal compression testing in a temperature range of 300–400 °C and a strain rate range of 0.001–1 s − 1 . A constitutive model based on hyperbolic-sine equation along with processing maps was used to describe the dependence of flow stress on the strain, strain rate, and deformation temperature. The flow stress was observed to decrease with increasing deformation temperature and decreasing strain rate. The deformation activation energy of this alloy was obtained to be 241 kJ/mol. The processing maps at true strains of 0.1, 0.2, 0.3 and 0.4 were generated to determine the region of hot workability of the alloy, with the optimum hot working parameters being identified as deformation temperatures of 340–500 °C and strain rates of 0.001–0.03 s − 1 . EBSD examinations revealed that the dynamic recrystallization occurred more extensively and the volume fraction of dynamic recrystallization increased with increasing deformation temperature. The role of element Y and second-phase particles (I- and W-phases) during hot compressive deformation was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.