Abstract

The high-temperature flow behavior of 7075 aluminum alloy was studied by hot compressive tests. Based on the experimental data, the efficiencies of power dissipation and instability parameter were evaluated. Processing maps were constructed by superimposing the instability map over the power dissipation map. Microstructural evolution of 7075 aluminum alloy during the hot compression was analyzed to correlate with the processing maps. It can be found that the flow stresses increase with the increase of strain rate or the decrease of deformation temperature. The high-angle boundaries and coarse precipitations distributing in the grain interior/boundaries, which may result in the deep inter-granular corrosion and large areas of denudation layer, should be avoided in the final products. The optimum hot working domain is the temperature range of 623–723K and strain rate range of 0.001–0.05s−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call