Abstract

We present a new methodology of determination of hot-cracking of metallic materials, which is based on laboratory application of the wedge rolling test and computer processing of the results obtained. The experiment was made with selected new types of high-alloyed free-cutting (ferritic and austenitic) steels. The initial specimens underwent an additional modification enabling easier development of cracks which consisted in milling out of the defined V-shaped notches on a side wall of a specimen. After taking specimens from the rolled material, we performed the metallographic analysis of microstructures by means of optical microscopy as well as a SEM analysis of the cracks. The resulting microstructure in the propagating crack vicinity was markedly influenced by this fracture. In the crack vicinity, a noticeable refinement of grains was observed due to the stress-induced recrystallization and occurrence of deformation zones that were pronounced by the rolled-out and stretched sulphides. As a rule, fractures were created by the ductile failure with visible pits, caused by tearing of sulphides from the material. Susceptibility of the studied steels to hot-cracking was evaluated and compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call