Abstract

The experimental stress–strain data from hot compression tests were used to establish constitutive equations in a homogenized cast AZ61 Mg alloy. Hot compression tests were conducted using the Gleeble 3500 thermal simulation machine in the temperature range of 250–450°C and strain rate range of 1×10−3–1s−1. The constitutive analysis was performed based on the effect of strain on the constitutive parameters. Constitutive equations as a function of strain were constructed according to the hyperbolic sine constitutive law. The correlation between the strain-dependent constitutive parameters and flow behavior was analyzed. Results showed that variations in the constitutive parameters with strain were associated with the stress–strain behavior. A comparatively higher scattering was obtained at low strains based on the constitutive equation with the strain-dependent stress multiplier (α) determined by power and exponential laws. However, the constitutive analysis with a constant α determined by the hyperbolic sine constitutive equation showed better estimations between the calculated and experimental flow stresses at different temperatures and strain rate conditions used in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.